Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; : 100759, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38574859

RESUMO

Recombinant expression of proteins, propelled by therapeutic antibodies, has evolved into a multi-billion-dollar industry. Essential here is quality control assessment of critical attributes such as sequence fidelity, proper folding, and post-translational modifications (PTMs). Errors can lead to diminished bioactivity and, in the context of therapeutic proteins, an elevated risk for immunogenicity. Over the years, many techniques were developed and applied to validate proteins in a standardized and high-throughput fashion. One parameter has, however, so far been challenging to assess. Disulfide bridges, covalent bonds linking two Cysteine residues, assist in the correct folding and stability of proteins and thus have a major influence on their efficacy. Mass spectrometry promises to be an optimal technique to uncover them in a fast and accurate fashion. In this work, we present a unique combination of sample preparation, data acquisition and analysis facilitating the rapid and accurate assessment of disulfide bridges in purified proteins. Through microwave-assisted acid hydrolysis (MAAH), the proteins are digested rapidly and artifact-free into peptides, with a substantial degree of overlap over the sequence. The nonspecific nature of this procedure, however, introduces chemical background which is efficiently removed by integrating ion mobility preceding the mass spectrometric measurement. The nonspecific nature of the digestion step additionally necessitates new developments in data analysis, for which we extended the XlinkX node in Proteome Discoverer (XlinkX/PD) to efficiently process the data and ensure correctness through effective false discovery rate correction. The entire workflow can be completed within one hour, allowing for high-throughput, high-accuracy disulfide mapping.

2.
Nature ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38632404

RESUMO

Bacteria have adapted to phage predation by evolving a vast assortment of defence systems1. Although anti-phage immunity genes can be identified using bioinformatic tools, the discovery of novel systems is restricted to the available prokaryotic sequence data2. Here, to overcome this limitation, we infected Escherichia coli carrying a soil metagenomic DNA library3 with the lytic coliphage T4 to isolate clones carrying protective genes. Following this approach, we identified Brig1, a DNA glycosylase that excises α-glucosyl-hydroxymethylcytosine nucleobases from the bacteriophage T4 genome to generate abasic sites and inhibit viral replication. Brig1 homologues that provide immunity against T-even phages are present in multiple phage defence loci across distinct clades of bacteria. Our study highlights the benefits of screening unsequenced DNA and reveals prokaryotic DNA glycosylases as important players in the bacteria-phage arms race.

3.
Nat Cancer ; 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519786

RESUMO

Cancers commonly reprogram translation and metabolism, but little is known about how these two features coordinate in cancer stem cells. Here we show that glioblastoma stem cells (GSCs) display elevated protein translation. To dissect underlying mechanisms, we performed a CRISPR screen and identified YRDC as the top essential transfer RNA (tRNA) modification enzyme in GSCs. YRDC catalyzes the formation of N6-threonylcarbamoyladenosine (t6A) on ANN-decoding tRNA species (A denotes adenosine, and N denotes any nucleotide). Targeting YRDC reduced t6A formation, suppressed global translation and inhibited tumor growth both in vitro and in vivo. Threonine is an essential substrate of YRDC. Threonine accumulated in GSCs, which facilitated t6A formation through YRDC and shifted the proteome to support mitosis-related genes with ANN codon bias. Dietary threonine restriction (TR) reduced tumor t6A formation, slowed xenograft growth and augmented anti-tumor efficacy of chemotherapy and anti-mitotic therapy, providing a molecular basis for a dietary intervention in cancer treatment.

4.
Adv Sci (Weinh) ; 11(14): e2307526, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38298064

RESUMO

Arginine and lysine, frequently appearing as a pair on histones, have been proven to carry diverse modifications and execute various epigenetic regulatory functions. However, the most context-specific and transient effectors of these marks, while significant, have evaded study as detection methods have thus far not reached a standard to capture these ephemeral events. Herein, a pair of complementary photo-arginine/δ-photo-lysine (R-dz/K-dz) probes is developed and involve these into histone peptide, nucleosome, and chromatin substrates to capture and explore the interactomes of Arg and Lys hPTMs. By means of these developed tools, this study identifies that H3R2me2a can recruit MutS protein homolog 6 (MSH6), otherwise repelDouble PHD fingers 2 (DPF2), Retinoblastoma binding protein 4/7 (RBBP4/7). And it is disclosed that H3R2me2a inhibits the chromatin remodeling activity of the cBAF complex by blocking the interaction between DPF2 (one component of cBAF) and the nucleosome. In addition, the novel pairs of H4K5 PTMs and respective readers are highlighted, namely H4K5me-Lethal(3)malignant brain tumor-like protein 2 (L3MBTL2), H4K5me2-L3MBTL2, and H4K5acK8ac-YEATS domain-containing protein 4 (YEATS4). These powerful tools pave the way for future investigation of related epigenetic mechanisms including but not limited to hPTMs.


Assuntos
Lisina , Nucleossomos , Lisina/metabolismo , Processamento de Proteína Pós-Traducional , Histonas/metabolismo , Cromatina , Arginina/metabolismo
5.
bioRxiv ; 2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38405978

RESUMO

Astrotactin 2 (ASTN2) is a transmembrane neuronal protein highly expressed in the cerebellum that functions in receptor trafficking and modulates cerebellar Purkinje cell (PC) synaptic activity. We recently reported a family with a paternally inherited intragenic ASTN2 duplication with a range of neurodevelopmental disorders, including autism spectrum disorder (ASD), learning difficulties, and speech and language delay. To provide a genetic model for the role of the cerebellum in ASD-related behaviors and study the role of ASTN2 in cerebellar circuit function, we generated global and PC-specific conditional Astn2 knockout (KO and cKO, respectively) mouse lines. Astn2 KO mice exhibit strong ASD-related behavioral phenotypes, including a marked decrease in separation-induced pup ultrasonic vocalization calls, hyperactivity and repetitive behaviors, altered social behaviors, and impaired cerebellar-dependent eyeblink conditioning. Hyperactivity and repetitive behaviors were also prominent in Astn2 cKO animals. By Golgi staining, Astn2 KO PCs have region-specific changes in dendritic spine density and filopodia numbers. Proteomic analysis of Astn2 KO cerebellum reveals a marked upregulation of ASTN2 family member, ASTN1, a neuron-glial adhesion protein. Immunohistochemistry and electron microscopy demonstrates a significant increase in Bergmann glia volume in the molecular layer of Astn2 KO animals. Electrophysiological experiments indicate a reduced frequency of spontaneous excitatory postsynaptic currents (EPSCs), as well as increased amplitudes of both spontaneous EPSCs and inhibitory postsynaptic currents (IPSCs) in the Astn2 KO animals, suggesting that pre- and postsynaptic components of synaptic transmission are altered. Thus, ASTN2 regulates ASD-like behaviors and cerebellar circuit properties.

6.
STAR Protoc ; 5(1): 102754, 2023 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-38096060

RESUMO

Characterization of isolated extracellular vesicles and particles (EVPs) is crucial for determining functions and biomarker potential. Here, we present a protocol to analyze size, number, morphology, and EVP protein cargo and to validate EVP proteins in both humans and mice. We describe steps for nanoparticle tracking analysis, transmission electron microscopy, single-EVP immunodetection, EVP proteomic mass spectrometry and bioinformatic analysis, and EVP protein validation by ExoELISA and western blot analysis. This allows for EVP cross-validation across different platforms. For complete details on the use and execution of this protocol, please refer to Hoshino et al.1.

7.
Science ; 382(6672): 820-828, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37917749

RESUMO

Mitochondria must maintain adequate amounts of metabolites for protective and biosynthetic functions. However, how mitochondria sense the abundance of metabolites and regulate metabolic homeostasis is not well understood. In this work, we focused on glutathione (GSH), a critical redox metabolite in mitochondria, and identified a feedback mechanism that controls its abundance through the mitochondrial GSH transporter, SLC25A39. Under physiological conditions, SLC25A39 is rapidly degraded by mitochondrial protease AFG3L2. Depletion of GSH dissociates AFG3L2 from SLC25A39, causing a compensatory increase in mitochondrial GSH uptake. Genetic and proteomic analyses identified a putative iron-sulfur cluster in the matrix-facing loop of SLC25A39 as essential for this regulation, coupling mitochondrial iron homeostasis to GSH import. Altogether, our work revealed a paradigm for the autoregulatory control of metabolic homeostasis in organelles.


Assuntos
Proteases Dependentes de ATP , ATPases Associadas a Diversas Atividades Celulares , Glutationa , Mitocôndrias , Proteínas Mitocondriais , Proteínas de Transporte de Fosfato , Glutationa/metabolismo , Homeostase , Ferro/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteômica , Retroalimentação Fisiológica , Proteínas Mitocondriais/metabolismo , Proteínas de Transporte de Fosfato/metabolismo , Humanos , Proteínas Ferro-Enxofre/metabolismo , Proteólise , Células HEK293 , Proteases Dependentes de ATP/genética , Proteases Dependentes de ATP/metabolismo , ATPases Associadas a Diversas Atividades Celulares/genética , ATPases Associadas a Diversas Atividades Celulares/metabolismo
8.
bioRxiv ; 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37662363

RESUMO

The T-cell receptor (TCR) is central to the ligand-dependent activation of T lymphocytes and as such orchestrates both adaptive and pathologic immune processes 1 . However, major questions remain regarding the structure and function of the human TCR 2-4 . Here, we present cryogenic electron microscopy structures for the unliganded human TCR in a native-like lipid bilayer, revealing three related conformations that are distinct from previously reported structures of receptors in detergent. These new "closed and compacted" conformations afford insights into the interactions between the TCR and the membrane, including conserved surface patches that make extensive outer leaflet contact, and suggest novel conformational regulation by glycans. We show that the closed/compacted conformations, not the extended one previously reported in detergent 5-8 , represent the unliganded resting state for the TCR in vivo , underscoring the importance of structural interrogation of membrane proteins in native-like environments. We use conformation-locking disulfide mutants to show that juxtamembrane linker extension is necessary for ligand-dependent TCR activation, demonstrating that TCR-intrinsic conformational change is necessary for TCR activation and opening numerous avenues for immunoreceptor engineering.

9.
Sci Adv ; 9(25): eadg7038, 2023 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-37343102

RESUMO

Fibrolamellar hepatocellular carcinoma (FLC) is a usually lethal primary liver cancer driven by a somatic dysregulation of protein kinase A. We show that the proteome of FLC tumors is distinct from that of adjacent nontransformed tissue. These changes can account for some of the cell biological and pathological alterations in FLC cells, including their drug sensitivity and glycolysis. Hyperammonemic encephalopathy is a recurrent problem in these patients, and established treatments based on the assumption of liver failure are unsuccessful. We show that many of the enzymes that produce ammonia are increased and those that consume ammonia are decreased. We also demonstrate that the metabolites of these enzymes change as expected. Thus, hyperammonemic encephalopathy in FLC may require alternative therapeutics.


Assuntos
Encefalopatias , Carcinoma Hepatocelular , Neoplasias Hepáticas , Síndromes Neurotóxicas , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Proteoma , Amônia
10.
Cell Metab ; 35(6): 1057-1071.e12, 2023 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-37100056

RESUMO

Genome-wide association studies (GWASs) of serum metabolites have the potential to uncover genes that influence human metabolism. Here, we combined an integrative genetic analysis that associates serum metabolites to membrane transporters with a coessentiality map of metabolic genes. This analysis revealed a connection between feline leukemia virus subgroup C cellular receptor 1 (FLVCR1) and phosphocholine, a downstream metabolite of choline metabolism. Loss of FLVCR1 in human cells strongly impairs choline metabolism due to the inhibition of choline import. Consistently, CRISPR-based genetic screens identified phospholipid synthesis and salvage machinery as synthetic lethal with FLVCR1 loss. Cells and mice lacking FLVCR1 exhibit structural defects in mitochondria and upregulate integrated stress response (ISR) through heme-regulated inhibitor (HRI) kinase. Finally, Flvcr1 knockout mice are embryonic lethal, which is partially rescued by choline supplementation. Altogether, our findings propose FLVCR1 as a major choline transporter in mammals and provide a platform to discover substrates for unknown metabolite transporters.


Assuntos
Estudo de Associação Genômica Ampla , Receptores Virais , Humanos , Animais , Camundongos , Receptores Virais/metabolismo , Mutação , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Mamíferos/metabolismo , Colina
11.
Cell ; 186(3): 621-645.e33, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36736301

RESUMO

Inborn errors of human IFN-γ-dependent macrophagic immunity underlie mycobacterial diseases, whereas inborn errors of IFN-α/ß-dependent intrinsic immunity underlie viral diseases. Both types of IFNs induce the transcription factor IRF1. We describe unrelated children with inherited complete IRF1 deficiency and early-onset, multiple, life-threatening diseases caused by weakly virulent mycobacteria and related intramacrophagic pathogens. These children have no history of severe viral disease, despite exposure to many viruses, including SARS-CoV-2, which is life-threatening in individuals with impaired IFN-α/ß immunity. In leukocytes or fibroblasts stimulated in vitro, IRF1-dependent responses to IFN-γ are, both quantitatively and qualitatively, much stronger than those to IFN-α/ß. Moreover, IRF1-deficient mononuclear phagocytes do not control mycobacteria and related pathogens normally when stimulated with IFN-γ. By contrast, IFN-α/ß-dependent intrinsic immunity to nine viruses, including SARS-CoV-2, is almost normal in IRF1-deficient fibroblasts. Human IRF1 is essential for IFN-γ-dependent macrophagic immunity to mycobacteria, but largely redundant for IFN-α/ß-dependent antiviral immunity.


Assuntos
COVID-19 , Mycobacterium , Criança , Humanos , Interferon gama , SARS-CoV-2 , Interferon-alfa , Fator Regulador 1 de Interferon
12.
Methods Mol Biol ; 2628: 291-300, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36781793

RESUMO

Plasma extracellular vesicles and particles (EVPs) are enriched in biomolecules that reflect individuals' physiological and pathological states. Several studies have demonstrated the potential of human plasma EVPs as a novel liquid biopsy. Here we describe a protocol for human plasma EVPs isolation and proteomic characterization. We isolated human plasma EVPs by the classical ultracentrifugation method and performed mass spectrometry-based proteomic profiling. Using this protocol, researchers can reveal the plasma EVPs proteome and explore the clinical application of plasma EVPs proteins for developing disease biomarkers.


Assuntos
Vesículas Extracelulares , Proteômica , Humanos , Proteômica/métodos , Espectrometria de Massas , Ultracentrifugação , Proteínas Sanguíneas/metabolismo , Vesículas Extracelulares/metabolismo , Proteoma/metabolismo
13.
Sci Adv ; 9(1): eade9120, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608131

RESUMO

Utilization of specific codons varies between organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine limitation-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced an adaptive proteomic shift toward low-arginine codon-containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.


Assuntos
Arginina , Neoplasias Colorretais , Humanos , Sequência de Bases , Arginina/genética , Arginina/metabolismo , Biossíntese de Proteínas , Proteômica , Escherichia coli/metabolismo , Códon/metabolismo , Neoplasias Colorretais/genética , Microambiente Tumoral
14.
bioRxiv ; 2023 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-36711568

RESUMO

Utilization of specific codons varies significantly across organisms. Cancer represents a model for understanding DNA sequence evolution and could reveal causal factors underlying codon evolution. We found that across human cancer, arginine codons are frequently mutated to other codons. Moreover, arginine restriction-a feature of tumor microenvironments-is sufficient to induce arginine codon-switching mutations in human colon cancer cells. Such DNA codon switching events encode mutant proteins with arginine residue substitutions. Mechanistically, arginine limitation caused rapid reduction of arginine transfer RNAs and the stalling of ribosomes over arginine codons. Such selective pressure against arginine codon translation induced a proteomic shift towards low arginine codon containing genes, including specific amino acid transporters, and caused mutational evolution away from arginine codons-reducing translational bottlenecks that occurred during arginine starvation. Thus, environmental availability of a specific amino acid can influence DNA sequence evolution away from its cognate codons and generate altered proteins.

15.
Nature ; 612(7940): 488-494, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36450990

RESUMO

Insect societies are tightly integrated, complex biological systems in which group-level properties arise from the interactions between individuals1-4. However, these interactions have not been studied systematically and therefore remain incompletely known. Here, using a reverse engineering approach, we reveal that unlike solitary insects, ant pupae extrude a secretion derived from the moulting fluid that is rich in nutrients, hormones and neuroactive substances. This secretion elicits parental care behaviour and is rapidly removed and consumed by the adults. This behaviour is crucial for pupal survival; if the secretion is not removed, pupae develop fungal infections and die. Analogous to mammalian milk, the secretion is also an important source of early larval nutrition, and young larvae exhibit stunted growth and decreased survival without access to the fluid. We show that this derived social function of the moulting fluid generalizes across the ants. This secretion thus forms the basis of a central and hitherto overlooked interaction network in ant societies, and constitutes a rare example of how a conserved developmental process can be co-opted to provide the mechanistic basis of social interactions. These results implicate moulting fluids in having a major role in the evolution of ant eusociality.


Assuntos
Formigas , Líquidos Corporais , Muda , Pupa , Comportamento Social , Animais , Formigas/crescimento & desenvolvimento , Formigas/fisiologia , Larva/fisiologia , Muda/fisiologia , Pupa/fisiologia , Líquidos Corporais/fisiologia
16.
Science ; 376(6599): eabm6380, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35587511

RESUMO

The molecular basis of interindividual clinical variability upon infection with Staphylococcus aureus is unclear. We describe patients with haploinsufficiency for the linear deubiquitinase OTULIN, encoded by a gene on chromosome 5p. Patients suffer from episodes of life-threatening necrosis, typically triggered by S. aureus infection. The disorder is phenocopied in patients with the 5p- (Cri-du-Chat) chromosomal deletion syndrome. OTULIN haploinsufficiency causes an accumulation of linear ubiquitin in dermal fibroblasts, but tumor necrosis factor receptor-mediated nuclear factor κB signaling remains intact. Blood leukocyte subsets are unaffected. The OTULIN-dependent accumulation of caveolin-1 in dermal fibroblasts, but not leukocytes, facilitates the cytotoxic damage inflicted by the staphylococcal virulence factor α-toxin. Naturally elicited antibodies against α-toxin contribute to incomplete clinical penetrance. Human OTULIN haploinsufficiency underlies life-threatening staphylococcal disease by disrupting cell-intrinsic immunity to α-toxin in nonleukocytic cells.


Assuntos
Toxinas Bacterianas , Síndrome de Cri-du-Chat , Endopeptidases , Haploinsuficiência , Proteínas Hemolisinas , Infecções Estafilocócicas , Staphylococcus aureus , Toxinas Bacterianas/imunologia , Síndrome de Cri-du-Chat/genética , Síndrome de Cri-du-Chat/imunologia , Endopeptidases/genética , Haploinsuficiência/genética , Haploinsuficiência/imunologia , Proteínas Hemolisinas/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Celular/genética , Necrose , Infecções Estafilocócicas/genética , Infecções Estafilocócicas/imunologia , Infecções Estafilocócicas/patologia
17.
Nat Cell Biol ; 24(3): 307-315, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35288656

RESUMO

Tumourigenesis and cancer progression require enhanced global protein translation1-3. Such enhanced translation is caused by oncogenic and tumour-suppressive events that drive the synthesis and activity of translational machinery4,5. Here we report the surprising observation that leucyl-tRNA synthetase (LARS) becomes repressed during mammary cell transformation and in human breast cancer. Monoallelic genetic deletion of LARS in mouse mammary glands enhanced breast cancer tumour formation and proliferation. LARS repression reduced the abundance of select leucine tRNA isoacceptors, leading to impaired leucine codon-dependent translation of growth suppressive genes, including epithelial membrane protein 3 (EMP3) and gamma-glutamyltransferase 5 (GGT5). Our findings uncover a tumour-suppressive tRNA synthetase and reveal that dynamic repression of a specific tRNA synthetase-along with its downstream cognate tRNAs-elicits a downstream codon-biased translational gene network response that enhances breast tumour formation and growth.


Assuntos
Aminoacil-tRNA Sintetases , Neoplasias da Mama , Leucina-tRNA Ligase , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Animais , Neoplasias da Mama/genética , Códon/genética , Feminino , Humanos , Leucina-tRNA Ligase/metabolismo , Glicoproteínas de Membrana , Camundongos , RNA de Transferência/metabolismo
18.
Front Endocrinol (Lausanne) ; 13: 1077644, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686464

RESUMO

Introduction: Diabetic Retinopathy (DR) is a potentially blinding retinal disorder that develops through the pathogenesis of diabetes. The lack of disease predictors implies a poor prognosis with frequent irreversible retinal damage and vision loss. Extracellular Vesicles (EVs) present a novel opportunity for pre-symptomatic disease diagnosis and prognosis, both severely limited in DR. All biological fluids contain EVs, which are currently being studied as disease biomarkers. EV proteins derived from urine have emerged as potential noninvasive biomarkers. Methods: In this study, we isolated EVs from DR retinal tissue explants and from DR patients' urine, and characterized the vesicles, finding differences in particle number and size. Next, we performed proteomic analysis on human explanted DR retinal tissue conditioned media, DR retinal EVs and DR urinary EVs and compared to normal human retinal tissue, retinal EVs, and urinary EVs, respectively. Results: Our system biology analysis of DR tissue and EV expression profiles revealed biological pathways related to cell-to-cell junctions, vesicle biology, and degranulation processes. Junction Plakoglobin (JUP), detected in DR tissue-derived EVs and DR urinary EVs, but not in controls, was revealed to be a central node in many identified pathogenic pathways. Proteomic results were validated by western blot. Urinary EVs obtained from healthy donors and diabetic patient without DR did not contain JUP. Conclusion: The absence of JUP in healthy urinary EVs provide the basis for development of a novel Diabetic Retinopathy biomarker, potentially facilitating diagnosis.


Assuntos
Diabetes Mellitus , Retinopatia Diabética , Vesículas Extracelulares , Doenças Retinianas , Humanos , Retinopatia Diabética/diagnóstico , Retinopatia Diabética/metabolismo , Proteômica , Retina/metabolismo , Biomarcadores/metabolismo , Vesículas Extracelulares/metabolismo , Diabetes Mellitus/metabolismo
19.
J Extracell Vesicles ; 10(13): e12165, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34750957

RESUMO

Age-related macular degeneration (AMD) is a leading cause of blindness worldwide. Drusen are key contributors to the etiology of AMD and the ability to modulate drusen biogenesis could lead to therapeutic strategies to slow or halt AMD progression. The mechanisms underlying drusen biogenesis, however, remain mostly unknown. Here we demonstrate that under homeostatic conditions extracellular vesicles (EVs) secreted by retinal pigment epithelium (RPE) cells are enriched in proteins associated with mechanisms involved in AMD pathophysiology, including oxidative stress, immune response, inflammation, complement system and drusen composition. Furthermore, we provide first evidence that drusen-associated proteins are released as cargo of extracellular vesicles secreted by RPE cells in a polarised apical:basal mode. Notably, drusen-associated proteins exhibited distinctive directional secretion modes in homeostatic conditions and, differential modulation of this directional secretion in response to AMD stressors. These observations underpin the existence of a finely-tuned mechanism regulating directional apical:basal sorting and secretion of drusen-associated proteins via EVs, and its modulation in response to mechanisms involved in AMD pathophysiology. Collectively, our results strongly support an active role of RPE-derived EVs as a key source of drusen proteins and important contributors to drusen development and growth.


Assuntos
Polaridade Celular/efeitos dos fármacos , Vesículas Extracelulares/metabolismo , Degeneração Macular/complicações , Degeneração Macular/metabolismo , Proteínas/metabolismo , Drusas Retinianas/complicações , Drusas Retinianas/metabolismo , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/efeitos dos fármacos , Células Cultivadas , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Nicotina/farmacologia , Organoides/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fagocitose , Espécies Reativas de Oxigênio/metabolismo , Secretoma/metabolismo
20.
Nature ; 599(7883): 136-140, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34707288

RESUMO

Glutathione (GSH) is a small-molecule thiol that is abundant in all eukaryotes and has key roles in oxidative metabolism1. Mitochondria, as the major site of oxidative reactions, must maintain sufficient levels of GSH to perform protective and biosynthetic functions2. GSH is synthesized exclusively in the cytosol, yet the molecular machinery involved in mitochondrial GSH import remains unknown. Here, using organellar proteomics and metabolomics approaches, we identify SLC25A39, a mitochondrial membrane carrier of unknown function, as a regulator of GSH transport into mitochondria. Loss of SLC25A39 reduces mitochondrial GSH import and abundance without affecting cellular GSH levels. Cells lacking both SLC25A39 and its paralogue SLC25A40 exhibit defects in the activity and stability of proteins containing iron-sulfur clusters. We find that mitochondrial GSH import is necessary for cell proliferation in vitro and red blood cell development in mice. Heterologous expression of an engineered bifunctional bacterial GSH biosynthetic enzyme (GshF) in mitochondria enables mitochondrial GSH production and ameliorates the metabolic and proliferative defects caused by its depletion. Finally, GSH availability negatively regulates SLC25A39 protein abundance, coupling redox homeostasis to mitochondrial GSH import in mammalian cells. Our work identifies SLC25A39 as an essential and regulated component of the mitochondrial GSH-import machinery.


Assuntos
Glutationa/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Animais , Transporte Biológico , Proliferação de Células , Células Cultivadas , Eritropoese , Glutationa/deficiência , Homeostase , Humanos , Proteínas Ferro-Enxofre/metabolismo , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Oxirredução , Proteoma , Proteômica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...